Stable Diffusion Textual Inversion: Control Your AI Image Generation
Excited about AI image generation but want more control? This tutorial dives into Stable Diffusion textual inversion, a powerful technique to fine-tune your results. Learn how to teach Stable Diffusion new concepts and styles by adding custom "words" to its vocabulary. We'll guide you step-by-step, making complex AI accessible and fun!
What is Stable Diffusion Textual Inversion?
Textual inversion allows you to "teach" Stable Diffusion specific concepts or styles without retraining the entire model. Instead, you create a new "word" (a unique token) that represents the desired concept. When this token is used in a prompt, Stable Diffusion will generate images incorporating that specific concept. This empowers you with more creative control for generating novel images for personal or commercial projects.
Why Use Textual Inversion?
- Precise Control: Finely control the generated images by teaching the model new objects and styles.
- Computational Efficiency: Less demanding than full model fine-tuning, making it accessible to more users.
- Combine with Dreambooth: Enhance your existing Dreambooth models with even greater stylistic control.
Setting Up Your Environment for Textual Inversion
Before we begin, ensure you have the necessary libraries installed. This setup prepares your system for training a unique "word" token.
Preparing Your Training Data
The quality of your training data directly impacts the effectiveness of textural inversion. For generating consistent results, 3 to 5 images should be good.
-
Gather Images: Find images that represent the concept you want to teach Stable Diffusion.
-
Save Images: Download these images to a dedicated folder like
inputs_textual_inversion
.
Defining Your New Concept
Let's tell Stable Diffusion what you're teaching it!
-
Concept Name: Choose a descriptive name for your concept (e.g., "grooty").
-
Initializer Token: Select a "seed" word that relates to your concept (e.g., "groot").
-
Placeholder Token: Create a unique token wrapped in brackets to represent your concept (e.g., "").
Create a Dataset for Textual Inversion
The dataset is critical for teaching Stable Diffusion the new concept.
-
Prompt Templates: Select or create sentences that use your
placeholder_token
to describe the concept. -
Dataset Class: Use this class to create the training data.
import random import numpy as np import PIL from torchvision import transforms import torch from torch.utils.data import Dataset import os
class TextualInversionDataset(Dataset): def init( self, data_root, tokenizer, learnable_property="object", # [object, style] size=512, repeats=100, interpolation="bicubic", flip_p=0.5, set="train", placeholder_token="*", center_crop=False, ): self.data_root = data_root self.tokenizer = tokenizer self.learnable_property = learnable_property self.size = size self.placeholder_token = placeholder_token self.center_crop = center_crop self.flip_p = flip_p
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
}[interpolation]
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w = img.shape[0], img.shape[1]
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
```
Load Stable Diffusion Model Files
Load the base Stable Diffusion model to prepare it for textual inversion.
Adding Your Unique Token
Make sure Stable Diffusion recognizes your new concept.
Next Steps
This tutorial covers the initial steps to textual inversion. The following steps would delve into actually training and incorporating the unique word into the model, and generating images.